Intersection Graphs of Pseudosegments: Chordal Graphs
نویسندگان
چکیده
We investigate which chordal graphs have a representation as intersection graphs of pseudosegments. For positive we have a construction which shows that all chordal graphs that can be represented as intersection graph of subpaths on a tree are pseudosegment intersection graphs. We then study the limits of representability. We describe a family of intersection graphs of substars of a star which is not representable as intersection graph of pseudosegments. The degree of the substars in this example, however, has to get large. A more intricate analysis involving a Ramsey argument shows that even in the class of intersection graphs of substars of degree three of a star there are graphs that are not representable as intersection graph of pseudosegments. Motivated by representability questions for chordal graphs we consider how many combinatorially different k-segments, i.e., curves crossing k distinct lines, an arrangement of n pseudolines can host. We show that for fixed k this number is in O(n). This result is based on a k-zone theorem for arrangements of pseudolines that should be of independent interest.
منابع مشابه
Chordal Graphs as Intersection Graphs of Pseudosegments
We investigate which chordal graphs have a representation as intersection graphs of pseudosegments. The main contribution is a construction which shows that all chordal graphs which have a representation as intersection graph of subpaths on a tree are representable. A family of intersection graphs of substars of a star is used to show that not all chordal graphs are representable by pseudosegme...
متن کاملComplement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملRelationships between the class of unit grid intersection graphs and other classes of bipartite graphs
We show that the class of unit grid intersection graphs properly includes both of the classes of interval bigraphs and of P6-free chordal bipartite graphs. We also demonstrate that the classes of unit grid intersection graphs and of chordal bipartite graphs are incomparable. © 2007 Elsevier B.V. All rights reserved.
متن کاملFinding intersection models: From chordal to Helly circular-arc graphs
Every chordal graph G admits a representation as the intersection graph of a family of subtrees of a tree. A classic way of finding such an intersection model is to look for a maximum spanning tree of the valuated clique graph of G. Similar techniques have been applied to find intersection models of chordal graph subclasses as interval graphs and path graphs. In this work, we extend those metho...
متن کاملNew representation results for planar graphs
A universal representation theorem is derived that shows any graph is the intersection graph of one chordal graph, a number of co-bipartite graphs, and one unit interval graph. Central to the the result is the notion of the clique cover width which is a generalization of the bandwidth parameter. Specifically, we show that any planar graph is the intersection graph of one chordal graph, four co-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Graph Algorithms Appl.
دوره 14 شماره
صفحات -
تاریخ انتشار 2010